

pensionsdashboardsprogramme.org.uk

Technical

standards

July 2022

Technical standards | July 2022

 1

Contents

1. Introduction.. 5

1.1 Purpose ... 5

1.2 Scope ... 5

2. Technical overview ... 5

2.1 Client registration .. 5

2.2 Pension dashboards ecosystem primary components ... 6

3. Sequence flows .. 8

3.1 Initial find .. 8

3.2 Internal register obtain PeIs-URL ... 10

3.3 Pull PeIs ... 12

3.4 Provider registers PeIs ... 14

3.5 Identity process ... 17

3.6 View ... 19

3.7 Refresh process .. 22

4. API technical standards .. 25

4.1 Scope ... 25

4.2 Transaction monitoring .. 25

4.3 Third Party Standards .. 25

5. Find API ... 25

5.1 Summary of the find API .. 25

5.2 Pension finder service (PFS) ... 26

5.3 Hosting .. 26

5.4 Format ... 26

5.5 Authorisation ... 26

5.6 HTTP method ... 26

5.7 Response ... 27

5.8 Error handling .. 28

6. Obtain PAT API ... 29

6.1 Summary of the obtain PAT API... 29

Technical standards | July 2022

 2

6.2 Hosting .. 29

6.3 Format ... 29

6.4 Authorisation ... 29

6.5 HTTP Method ... 29

6.6 Response ... 30

6.7 Error handling .. 30

7. Register PeI API... 32

8.1 Summary of the Register PeI API ... 32

8.2 Hosting .. 32

8.3 Format ... 33

8.4 Authorisation ... 33

8.5 HTTP Method ... 33

8.6 Resource Description ... 33

8.7 Create resource description ... 33

8.8 Read resource description ... 35

8.9 Update resource description .. 36

8.10 Delete resource description .. 37

8.11 List resource description .. 37

8.12 Error handling .. 38

9. View API .. 39

9.1 Summary of view API ... 39

9.2 Hosting .. 39

9.3 Format ... 39

9.4 Authorisation ... 39

9.5 HTTP Method ... 39

9.6 Response ... 40

9.7 Error Handling .. 41

10. Introspect API ... 42

10.1 Summary of Introspect API .. 42

10.2 Hosting .. 42

10.3 Format ... 42

Technical standards | July 2022

 3

10.4 Authorisation ... 42

10.5 HTTP Method ... 42

10.6 Response ... 43

10.7 Error Handling .. 45

11. Permission API .. 45

11.1 Summary of permission API ... 45

11.2 Hosting .. 45

11.3 Format ... 45

11.4 Authorisation ... 45

11.5 HTTP method ... 45

11.6 Response ... 46

11.7 Error handling .. 49

12. PAT refresh API ... 49

12.1 Summary of PAT refresh API .. 49

12.2 Hosting .. 49

12.3 Format ... 49

12.4 Authorisation ... 49

12.5 HTTP method ... 49

12.6 Response ... 50

12.7 Error handling .. 50

13. Authorise API ... 51

13.1 Summary of authorise API ... 51

13.2 Hosting .. 51

13.3 Format ... 51

13.4 Authorisation ... 52

13.5 HTTP Method ... 52

13.6 Response ... 53

13.7 Error handling .. 54

14. Obtain PeIs API ... 55

14.1 Summary of obtain PeIs API .. 55

14.2 Hosting .. 55

Technical standards | July 2022

 4

14.3 Format ... 55

14.4 Authorisation ... 55

14.5 HTTP Method ... 55

14.6 Response ... 56

14.7 Error handling .. 56

15. Obtain PeI configuration API ... 57

15.1 Summary of obtain PeI configuration API .. 57

15.2 Hosting .. 57

15.3 Format ... 57

15.4 Authorisation ... 57

15.5 HTTP Method ... 57

15.6 Response ... 58

15.7 Error handling .. 58

16. Technical standards .. 59

16.1 Dashboard redirection protocols .. 59

16.2 JWT signing and verification .. 60

16.3 Pension identifier format ... 60

16.4 GUID creation protocols ... 60

16.5 Data providers (UMA Resource Servers) .. 61

17. Appendix ... 62

17.1 Glossary ... 62

Technical standards | July 2022

 5

1. Introduction

1.1 Purpose

This document outlines the technical standards for pensions dashboards that need to be adopted by

industry participants: qualifying pensions dashboard services (QPDS); and pension providers (trustees

and manager of occupational pension schemes as well as the managers of stakeholder and personal

pension schemes). References to data providers includes pension providers and third parties who are

supporting them comply with their dashboard duties. It also contains important guidance and

background QPDS and data providers should familiarise themselves with before they comply with the

standards.

Technical standards are separate from, but designed to complement, the Financial Conduct Authority’s

(FCA) regulatory framework. As the FCA regulates the conduct of firms carrying out an activity, the

FCA’s Handbook rules will apply to QPDS firms and can impose standards on those firms (aligned to

FCA’s statutory objectives) when carrying out the qualifying pensions dashboard service. The FCA will

consult on its proposed Handbook rules in due course.

1.2 Scope

The following core areas are covered in the document:

• part 1: technical overview: sections 2 to 3

• part 2:

o API standards: sections 4 to 13

o technical standards: section 16

• glossary: section 17

Part one provides a technical overview of how the ecosystem operates. This is essential background

reading for participants to be able under to understand the mandatory API and other technical

standards detailed in part two.

2. Technical overview

2.1 Client registration

Registration of OAuth clients (ie QPDS and data providers) is required for the operation of the UMA

profiles. The governance register (which includes the UMA authorisation server as the software entity

managing software client registration) will provide services for client registration.

Static registration may be more secure but dynamic registration may be expected by industry

participants, may involve fewer manual processes, and is necessary to support public client types

(especially non-confidential ie SPAs, native apps).

In order for dynamic client registration to be effective it requires the AS to support dynamic registration

[ODynClient] and to provision clients appropriately. The AS must support software statements to

bootstrap the registration process securely.

Technical standards | July 2022

 6

Client authentication to the AS will be defined in accord with dynamic registration requirements.

Currently static client registration is being used. In future, dynamic client registration will be provided

and this document updated accordingly.

Overview of the pensions dashboards ecosystem primary components primary components

This diagram shows each component involved in the protocol interactions in this document.

2.2 Pension dashboards ecosystem primary components

Components are presented in packages and each package corresponds to a participant in the

ecosystem: dashboard, consent and authorisation (C&A) service, data provider, identity service. Within

a package the components expose interfaces (blue lines) and call interfaces of other components (lines

of other colours dependent upon the caller) eg the data provider interfaces are called by dashboards

(red) and by C&A components (green).

Calls within packages are not shown on this diagram eg PDP.ConsentandControl – handling redirections

– deeply interacts with UserData and the UMA authorisation components eg PDP.ConsentandControl

interacts with PFS when it initiates a search, passing consents and search parameters and Authorisation

Server grants.

Dashboards expose no interfaces (other than their redirection endpoint which is used to unwind a

previous redirection to the relevant consent and authorisation redirection interface).

PDs must redirect their user agents to either of C&A’s interfaces – UMAGrant.ClaimsRedirection or

ConsentandControl.Redirect. The ClaimsRedirection interface is part of the UMA authorisation flow. The

Consent.Redirect interface handles requests of type ‘find’, ‘consent’ and ‘refresh’.

Technical standards | July 2022

 7

Technical standards | July 2022

 8

The authorisation server is not explicitly shown on the diagram: it is part of the consent and

authorisation package and comprised of the UMA components and some of the functions of consent and

control and user data.

The two UMA2 interfaces can be seen: federated authorisation is called by a data provider, and UMA

Grant by the dashboard.

Note that, since an UMA authorisation server is a specialisation of an OAuth2 authorisation server, the

Token interface, part of UMA-Grant(OAuth2), is also the same endpoint called by the dataata provider

when it needs to obtain a PAT (Protection API Access Token), which is an OAuth2 access token with

scope uma_protection, subsequently used against the UMA Federated Authorisation Protection API

(UMAFedz).

Apart from UMA support itself, the ecosystem package shows the other primary components of the C&A

service. The user-facing consent services manage user interaction and policy. User data contains the

policy and registered PeIs for each user; it exposes the interface for dashboards to obtain PeIs for their

users. The consent and control component also manages user and authorisation processes and

repositories (user data , selectable names for user directed find, etc). PFS performs search

orchestration after the consent and control component has established the context, which includes

proving user identity using the identity service, establishing user data , and other tasks as necessary.

The identity service interface (IDP.OIDC) is simplified in this diagram (it is also a specialisation of the

standard OAuth2 Authorisation Service endpoints).

3. Sequence flows

3.1 Initial find

This section presents a flow for a new user at a dashboard, initiating a find activity at the C&A.

In this case the dashboard knows it has a new user (unless it is a stateless dashboard when it assumes

it has a new user) and redirects to the C&A to process a find operation. The condition around Step 12ff

is discussed in a later section on obtaining PeIs URL from dashboards. In the simple ‘new find’ variant,

these find steps will be performed, specifically the PFS will be invoked, Step 14, to orchestrate calls to

several/all data providers

Technical standards | July 2022

 9

Technical standards | July 2022

 10

3.2 Internal register obtain PeIs-URL

This sequence is nested in the above flow. After creating a C&A account at step 07 this sequence

registers the protected resource for the owner user’s PullPeIs resource. In this case both the UMA

authorisation server and the UMA Resource Server which presents the PullPeIs resources are in the same

security domain, ie are part of the C&A service. Accordingly, there is the possibility of significant

optimisation (customisation) of the relationship between the AS and the PullPeIs Resource Server, yet to

still offer the same external UMA2 grant based access to the protected resource by dashboards.

The following takes an ‘UMA2 Federated Authorisation’ approach.

In Step 04 the parameter Alice’-AccountID is Alice’s identity token, available from the parent sequence,

along with the new derived AccountID, from which a token can be constructed in the trusted UserData

RS. This token is used as an authorisation grant for the authorisation server to issue an internal PAT. In

implementation, this could use the OAuth2 JWT-bearer grant. Since the AS and the RS (the UserData

component) are coupled and in the same domain, the AS

Technical standards | July 2022

 11

Technical standards | July 2022

 12

could check that Alice’s account (AccountID) exists (not shown on the diagram) or simply trust the

internal caller and signature, and issue the requested access token (the InternalPAT) at step 05.

3.3 Pull PeIs

Once the dashboard knows the user’s C&A account in the form of the relevant protected PeIs resource, it

can pull the PeIs as follows. The dashboard attempts to GET the URL

https:://CA.ObtainPeIs/<userGUID> with a parameter of the user is ‘owner’. Initially, this will fail

because the dashboard does not quote an appropriate access token, but it will trigger the UMA

authorisation dance which obtains the RPT which then succeeds in the subsequent call.

This flow is not limited to being a direct successor to the initial find flow above, it also stands alone and

can be performed whenever necessary

• immediately after find new

• for up to the defined SLA after an initial find as the (slower) data providers find pension records

• after repeat finds (user-controlled timing, user directed finds)

• when a delegate (financial adviser or guidance officer) is initialising their records for the client

in which they have the client-specific PeIsURL in their communication from the C&A server

• when an owner-user initialises a new dashboard by importing PeI data from a previous one, the

UMA PeIs resource would bootstrap the process of initialising the new dashboard. New

pensions dashboard attempting to obtain the PeIs would initiate the whole of this process,

including new identity assertion, account update, new consent and policy for the new

dashboard)

Technical standards | July 2022

 13

Technical standards | July 2022

 14

3.4 Provider registers PeIs

This flow is referenced from initial find flow above.

The PFS’s only role is to orchestrate the calls, step 01 in the diagram below, the receipt of each ‘find’

call should be acknowledged using low level http 202 code; note this has nothing to do with whether the

find actually results in the location of a pension.

When a pension is found it is registered at the C&A service by the data provider using the UMA

Protection API and an access token issued for the purpose, a PAT.

If no pension is located (step 11) the data provider may store a hash of the some of the details used in

the search so that when a subsequent search is initiated by the same user the provider does not waste

resources in running a repeat search.

Consents in this flow are assumed to permit find and register. If register is not permitted then the data

provider could still contact its customer using its existing details as it knows that the customer is

interested in their pension (but this is a business decision for the provider).

If a pension is located (and consents permit) the provider should register the corresponding PeI with the

C&A server as per the flow (steps 02ff).

Technical standards | July 2022

 15

Technical standards | July 2022

 16

Note that Alice’s personal details originated from the IDP/C&A service are never retained by the data

provider whether or not the find is successful, step 12.

The case where the find failed has been mentioned above. However, in cases where the find succeeded

(so steps 02-10 apply) a data provider will need to arrange for step 02 ‘get Owner’s Details’ to function

correctly, for view and for find, whether or not the same user has executed a find operation in the past.

The pensions dashboards ecosystem requires that these details are:

• any identifier the provider wants to use for the owner’s account

• any internal keys or similar which enable the provider to locate relevant internal records

associated with the owner and their assets

• the user’s authorisation server (Of course in the PD ecosystem at least initially this will be the

one C&A Server, but theoretically this might change over time if users appoint other ‘open

finance’ components, so the actual C&A AS URL should be kept in the RS from the outset; in any

case it is required to be returned to the dashboard in the UMA protocol.)

• PAT when one exists

• associated PeIs and their descriptions, including a map of inbound URLs to the relevant PeI

• UMA _id for each PeI

Data providers will need to consider how to retrieve this data in two cases:

• on the basis of the inbound View URL. This is a map of URL->PeI->_id and from that to the

owner & PAT

• on the basis of subsequent ‘find’ requests for the same user. The provider needs to decide

whether to repeat the find operation itself, which should result in the same internal owner

identifier and internal keys (and thus find the above details), or keep a hash of the inbound

personal details and use that to index the above details.

Step 03 shows the use of a temporary credential as an OAuth2 grant of type JWT-bearer, as described

in section 3.5.

Step 06 ‘generate or retrieve PeI’ also indicates a decision for providers. A PeI is a unique URI (not URL)

identifying a ‘asset’ / ‘pot’ / ‘pension’ uniquely and persistently. It is independent of the owner of the

asset. Thus it can be allocated at any time from the creation of the asset until its initial registration with

the PD C&A service. There are choices open to data providers in their business processes and in their

preparation for PD integration based on the properties of the PeI, its behaviour across providers, and

the provider’s decisions on processing ‘maybe’ or ‘uncertain finds’. These matters need to be discussed

with industry representatives and PDP should issue advice or mandation.

Technical standards | July 2022

 17

3.5 Identity process

Whenever the C&A service needs to determine a user’s identity it uses the identity service, which is

(assumed to be) a federation of external identity providers, interfaced via some form of hub. The

purpose of this section is to present how this service integrates with the C&A.

There are two key use cases, dependent upon the ‘role’ of user. The user may be a pension owner or the

user may be a delegate of one or more owners. Both user roles need identity proofing. PDP has not yet

determined the Level of Confidence (according to GPG45) required for proofing of each role. The identity

service will issue authenticators to each user to a certain standard (GPG44) to enable reauthentication

without re-proofing. In addition, delegates will have to have their status as a valid delegate checked.

This check will probably be recorded in the governance register which will surface an API to be used for

verification in the following flow.

Technical standards | July 2022

 18

Technical standards | July 2022

 19

The implementation of the standard OIDC identity service will comprise of an authorisation endpoint

(handling redirection of the user agent to so the user can authenticate and prove their identity) and a

token endpoint from which the identity assertion (ID Token) will be retrieved, using OIDC authorisation

code flow. OIDC Core also defines a ‘user_info’ endpoint to obtain additional claims, in addition to those

which may be in the ID Token, if the pensions dashboard identity profile or standards requires it. In

addition, it is likely that the OIDC interface will be brokered via a hub component (not shown in this

document) so that a federation of identity providers can be supported.

The context of this sequence (eg initial find above) will determine details of the information required

from the Identity process. For example, the call will determine whether the user is a delegate on a

delegate dashboard (eg bob@DBj) or an owner user. The sequence should only be called when the caller

has checked there is no current session for the owner user. After this flow the caller may also create the

C&A account for the owner user and establish the required session as appropriate, using the temporary

data noted in the flow.

The dashboard may have already authenticated the user using the ecosystem identity service (see p301

6.1 for discussion). The fact that the user is authenticated by an IDP may be added to the redirect

parameters (probably adding an element to the RQP so an RQP is comprised of: alice@DBi, owner, and

idp=<IDP>). Given that the Pensions Dashboards Programme mandate that the IDPs in its federation

must maintain an open session (for a controlled period) then the redirection to the identity service in the

above flow can immediately return the OIDC grant code without requiring the user to reauthenticate at

the Open ID provider (IDP).

3.6 View

When a dashboard has obtained PeIs for its user, it will usually seek to view the pension details, by

GETing the dereferenced PeI. This action will initially fail, as there is no access token, initiating the

UMA2 Grant authorisation dance.

Dereferencing a PeI means taking the PeI which is a URI (format ‘pei’:<holdername GUID>:<asset GUID>

e.g. “pei: 85624cd0-de31-455c-8ce8-f26515a29577: 9112820e-7d9d-47e0-bbfe-129b8afbab0d”) and

breaking it into components, looking up the holdername, e.g. ‘85624cd0-de31-455c-8ce8-

f26515a29577’ in a configuration table to derive a host name, eg ‘aviva99.dashboard/pei’, and

composing a URL eg https://aviva99.dashboard/pei/85624cd0-de31-455c-8ce8-f26515a29577 . It is

this URL which is an UMA protected resource; the URL of the pension details to be accessed by an http

GET with appended role parameter, eg ‘?user=owner’.

The governance register API will map the <holdername> element of the PeI to the current URL of the

provider’s view endpoint (example above). A cache entry might be deleted if a resulting hostname is not

resolved or periodically based on pensions dashboards standards.

Dashboard preparation a user may select one or more descriptions of their pensions to view (Step 01).

The dashboard finds related control information whether this be from a persistent store (for dashboards

which have accounts & appropriate security controls) or from its current session. For each user

description of an asset there will be a PeI and may be an existing access token, RPT. If the user has

been authenticated to the identity service recently from that dashboard there may be a PCT available

https://aviva99.dashboard/pei/85624cd0-de31-455c-8ce8-f26515a29577

Technical standards | July 2022

 20

from that user’s account at the dashboard. The PeI is dereferenced as discussed above, deriving the

protected resource for the asset.

Authorised view access the ‘happy path’ in which the provider locates the UMA control information

based on analysis of the URL (step06) and there is a valid access token (07) which matches the user’s

role (owner or delegate) and other information (08), results in the api returning the pension details

associated with the PeI to the dashboard.

There are three types of authorisation failure:

• those for which the AS can provide an UMA permission token (PMT) to the RS which is returned

to the dashboard

• the case in which the PAT has expired, so the UMA AS cannot respond to the provider’s RS

request for a permission ticket. This is handled by a PDP-specific error message requesting

‘REFRESH’ processing which is discussed in a later section

• final failure in which the RS or AS does not return a PMT nor a specific instruction. In this case

the dashboard must assume that the PeI is invalid or that the user has withdrawn consent for

that dashboard (in spite of having been directed to the C&A as part of the above automatic

handling processes)

Technical standards | July 2022

 21

Technical standards | July 2022

 22

The authorisation process (Step 15) uses the current PMT (always present), and current PCT (if there is

one) and a new RQP token, minted by the dashboard for every relevant call to the C&A service. The RQP

(Requesting Party token) is an assertion by the dashboard that a specific user known to it (eg ‘alice’) is

present at the interface of a specific dashboard instance (e.g. DBi), and that the user is acting in a

specific role (i.e. owner or delegate).

The AS makes the authorisation determination based on the state (contained in the PMT at step 15 and

in the AS) and the other parameters. If the authorisation request is successful, the AS returns an access

token for the specific protected resource (RPT) and it may issue a new or replacement PCT. The PCT

(Persistent Claims Token) binds the user at the dashboard to the C&A’s view of the identity (derived

from the external identity service) and the user’s validated role. When an authorisation request is

successful the dashboard should retry the view request.

If the AS determines that it cannot grant access, but that it can continue the authorisation process, it

issues another PMT and requests that the client (dashboard) redirects the user to its Claims endpoint for

an interactive session with the user. There the appropriate identity uplift occurs and if the user is an

‘owner’ the appropriate consents are refreshed. (Details of interaction between the claims redirection

code and the Consent and UserData components are omitted here, but see also the sequences Initial

find and pull PeIs above.) The AS also needs to consider whether the policy of the owner for a specific

PeI and specific delegates matches the recently uplifted user. If identity uplift was successful and policy

matches PeI and person, the AS issues another PMT and unwinds the redirection back to the dashboard.

The dashboard uses the new PMT to re-attempt the authorisation call.

3.7 Refresh process

Only owner-users can perform refresh (not delegates); same is true of the other redirect purposes – find

and consent.

Refresh processing may be entered as a result of failure of a view attempt in which a PAT has expired,

or in routine use of the C&A Consent service by the user (eg in adding dashboards, changing consents or

stepping up identity after PCT expiry after 90 days eg user directed find or repeat find).

The owner-user is redirected to the C&A service so that consents can be confirmed or modified and, if

necessary, the identity can be uplifted. If the user is in session at the C&A then there may be no reason

to perform a reauthentication. (This is not shown on the diagram but simply skips the identity process.)

The flow shows the account details being checked, including the dashboard-provided user’s PeIsURL.

There are error conditions related to dashboard and user which can be corrected as part of this process

(not shown) eg the user’s correct PeIsURL is returned as described in the section ‘Initial find’ and the

RQP can be used to check that the user has consent policy for that dashboard.

Technical standards | July 2022

 23

Technical standards | July 2022

 24

Irrespective of the dashboard’s stated purpose for the redirection (REFRESH, repeat FIND or CONSENT),

or the purpose of the redirection to the Claims redirection endpoint during authentication (to seek

periodic step-up), the C&A has the opportunity to run the loop to refresh PATs at the relevant providers

of the PeIs of the user. Clearly if the redirection from a dashboard was for REFRESH, this implies that the

dashboard had received an error from a provider during an attempted view, but even in this case the

C&A needs to manage the process appropriately: for example if a user has withdrawn consent for any

dashboard to view a PeI, or for registrations of PeIs from that provider, there is no need to attempt the

refresh.

Note that, unlike the initial find process in which the owner-user’s personal details are sent to perform a

search at the provider, there is no need for these biographic details in performing a refresh. All that is

needed are the parameters shown at step 07. The ‘relevant PeIs’ are those which a) are registered for

the user’s account, b) the RS hosting one or more of these PeIs is not subject to a current (user-directed,

repeat) find1 for the same user, c) the RS has not already been contacted2 in the same refresh loop. For

each relevant PeI, which has the relevant resource _id, the C&A can determine the provider RS and

hence which Provider’s Refresh end point to call.

The above flow assumes that the user does approve refreshing the PAT and that the dashboard which

initiated the refresh is still consented to receive the owner’s PeIs and other data. If not the return

redirection (steps 13, 14) would not carry the current PeIsURL and may have a specific error code so the

dashboard knows the user has withdrawn consent.

1 Because if a find is happening for that user for the same RS, the RS will have a separate opportunity to

refresh the PAT.
2 Because only one PAT is needed for each user at an RS (not per PeI if the same user has more than one

PeI).

Technical standards | July 2022

 25

4. API technical standards

4.1 Scope

The following areas will be covered in the within API technical standards section:

• a summary of each API

• hosting

• format

• HTTP method

• authorisation

• expected responses

• error handling

4.2 Transaction monitoring

All interfaces will carry a unique transaction identifier GUID (request_id) for logging, audit and

monitoring purposes, the detail of which will be published in future documentation.

The transaction identifier is issued by the party which initiates the transaction.

For transactions which PDP initiates, PDP will generate the identifier; for transactions which the data

provider or QPDS initiates, the provider will generate the identifier.

4.3 Third Party Standards

These standards are built upon a number of third-party standards. Here is a list of them:

Standard Scope Issuing

Authority

Contact Details Version

UMA Grant

2.0

 Kantara

Initiative

https://docs.kantarainitiative.org/uma/wg/rec-

oauth-uma-grant-2.0.html

2.0

UMA

Federated

Authorisation

2.0

 Kantara

Initiative

https://docs.kantarainitiative.org/uma/wg/rec-

oauth-uma-federated-authz-2.0.html

2.0

5. Find API

5.1 Summary of the find API

The find API is exposed by data providers and its purpose is to receive the find requests which are

initiated by the pension finder service (PFS) containing the pension owner’s PII data needed for a data

provider to use in order to determine a match within the internal records. The find input data will also

carry the relevant consents given by the pension owner during the find process and the user account

https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html
https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html
https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-federated-authz-2.0.html
https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-federated-authz-2.0.html

Technical standards | July 2022

 26

token needed for obtaining the PAT (protected API token) needed for the data providers to use the UMA

specific protection API to register PeIs upon a successful find with the consent and authorisation service.

5.2 Pension finder service (PFS)

The pension finder service is orchestration middleware, it distributes the find request across the data

provider endpoints by invoking their find APIs and manages the low-level interactions to achieve

message delivery to the data providers.

5.3 Hosting

Each data provider connected to the ecosystem will be required to host their find API within their

domain.

5.4 Format

The find API will be a REST API using JSON encoded as UTF-8.

5.5 Authorisation

This is a closed ecosystem with all end point connections secured using private PKI certificates issued by

the governance register to suitably enrolled organisations. This enables connecting entities to establish

a mutual TLS connection with the central infrastructure. For find requests only the PFS will be

responsible for invoking the find API endpoints. Currently there are no additional API security

requirements for the find API.

5.6 HTTP method

The PFS will be restricted to only make HTTP POST requests to each data provider find endpoint with

the body of the request containing the find parameters as a signed JWTs.

Summary of the find request data parameters sent to data provider find endpoint:

user_token A combination of the following expressed as a JWT:

• verified identity details such as name, date of birth and postcode.

These will have been selected by the C&A service from the verified

details supplied by the Identity Service

• identity details asserted by the user at the C&A’s Consent user

interface eg National Insurance Number

user_account_token The User Account Token is an OAuth2 authorisation grant, expressed as a

JWT (JSON web token) which can be exchanged for the PAT

Technical standards | July 2022

 27

consents_token A set of user consents for subsequent processing using the supplied identity

details expressed as a JWT

request_id Transaction identifier GUID used for monitoring and reporting purposes

For example, the PFS makes the following HTTP POST request using mTLS:

POST /find HTTP/1.1

Host: www.dashboard.aviva.com

Content-Type: application/json;charset=UTF-8

{

"user_token":”eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI

6IkpvaG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ.SflKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_adQs

sw5c”,

“user_account_token”:”eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiw

ibmFtZSI6IkpvaG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ.SflKxwRJSMeKKF2QT4fwpMeJf36POk6y

JV_adQssw5c”,

"consents_token":"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmF

tZSI6IkpvaG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ.SflKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_a

dQssw5c",

“request_id”: “040dbfd1-40db-4caa-96ea-bf3c7d230877”

}

5.7 Response

If the find request sent from the PFS succeeds, the data provider (UMA Resource Server) will respond

with a 202 Accepted HTTP status implying acknowledgment of the find request. Following this the PFS

will not be involved in any request back from the data provider.

HTTP/1.1 202 Accepted

If a match is found then the data provider will issue a PeI in the set format alongside it’s description

and register this directly to the consent & authorisation service via the UMA protection API. If no match

is found then there is no further action required by the data provider.

Technical standards | July 2022

 28

5.8 Error handling

If the find request sent from the PFS fails then data provider is expected to respond with the

appropriate HTTP status code and error message. The body of the response for an error must contain an

error code which correlates to a message so that the test harnesses and logs can be automated.

4xx

The 4xx class of status code is intended for cases in which the client seems to have erred. Except when

responding to a POST request, the server must include an entity containing an explanation of the error

situation, and whether it is a temporary or permanent condition.

Status Message Note

400 Bad Request Potential bad requests examples:

• PFS is not sending a HTTP POST

• parsing error by data provider

• schema not configured correctly

5xx

The 5xx (Server Error) class of status code indicates that an exception occurred during the elaboration

of a request. An indication about the nature of the error must be included together with an indication if

the error is temporary or permanent.

Status Message Note

500 Internal Server

Error

503 Service

Unavailable

This status is temporary used when the service is down for

maintenance or is overloaded by requests

Technical standards | July 2022

 29

6. Obtain PAT API

6.1 Summary of the obtain PAT API

During find the PFS includes a valid User Account Token issued by the authorisation server (part of the

C&A) in the Find request sent out to the data provider find interface endpoints. The User Account Token

is a OAuth2 authorisation grant, expressed as a JWT (JSON web token) which can be exchanged for the

PAT, which is an OAuth2 access token, as per the OAuth2 standard by the presentation of this token to

the authorisation server’s token endpoint. Data providers will be a client of the authorisation server.

The obtain PAT API (i.e. the authorisation server’s OAuth2 token endpoint) will be exposed by the

authorisation server and will follow a standard implementation of

https://datatracker.ietf.org/doc/html/rfc6749#section-4.5 using urn:ietf:params:oauth:grant-type:jwt-

bearer in accord with https://datatracker.ietf.org/doc/html/rfc7523#section-2.1

6.2 Hosting

The API will be hosted on the authorisation server (AS) as the request is made is to the authorisation

server’s token endpoint.

6.3 Format

The obtain PAT API will be a REST API with character encoding of UTF-8 in the HTTP request entity-

body.

6.4 Authorisation

The data provider will be a client of the authorisation server and will need to register it’s software with

it before a request can be made. This will ensure the communication channel is encrypted and will

establish dynamic trust between both parties.

6.5 HTTP Method

The data provider MUST use the HTTP "POST" method when making access token

requests to the authorisation server’s token endpoint, by sending the following parameters using the

"application/x-www-form-urlencoded" format with a character encoding of UTF-8 in the HTTP request

entity-body:

 grant_type

 REQUIRED. Value MUST be set to " urn:ietf:params:oauth:grant-

 type:jwt-bearer".

 assertion

 REQUIRED. MUST contain a single JWT

https://datatracker.ietf.org/doc/html/rfc6749#section-4.5
https://datatracker.ietf.org/doc/html/rfc7523#section-2.1

Technical standards | July 2022

 30

 scope

 REQUIRED. Specifies the scope of the access request. MUST be uma_protection

For example, the data provider makes the following HTTP POST request using mTLS:

POST /token HTTP/1.1

 Host: as.pdp.com

 Content-Type: application/x-www-form-urlencoded;charset=UTF-8

 grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3jwt-bearer&

 assertion=PHNhbWxwOl...[omitted for brevity]...ZT4&scope= uma_protection

6.6 Response

If the request for an access token is valid, the authorisation server generates an access token (PAT) as a

structured JWT bound (in accordance with Section 3 RFC8705) to the resource server (data provider

certificate)

For example, a successful token response may look like the following with all the properties of the PAT

token encoded in the payload:

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

{

“access_token”:“eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFt

ZSI6IkpvaG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ.SflKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_a

dQssw5c”,

“token_type”:“pension_dashboard_pat”

}

6.7 Error handling

If the access token request is invalid, such as the redirect URL didn’t match the one used during

authorisation, then the server will return an error response. The error handling will follow standard

Oauth 2 failure codes as per RFC6749.

https://datatracker.ietf.org/doc/html/rfc8705#section-3
https://datatracker.ietf.org/doc/html/rfc6749#section-5.2

Technical standards | July 2022

 31

Error responses are returned with an HTTP 400 status code (unless specified otherwise), with error and

error_description parameters. The error parameter will always be one of the values listed below.

• invalid_request – The request is missing a parameter so the server can’t proceed with the

request. This may also be returned if the request includes an unsupported parameter or repeats

a parameter.

• invalid_grant – The authorisation code (or user’s password for the password grant type) is

invalid or expired. This is also the error you would return if the redirect URL given in the

authorisation grant does not match the URL provided in this access token request.

• invalid_scope – For access token requests that include a scope (password or client_credentials

grants), this error indicates an invalid scope value in the request.

• unauthorised_client – This client is not authorized to use the requested grant type. For example,

if you restrict which applications can use the Implicit grant, you would return this error for the

other apps.

• unsupported_grant_type – If a grant type is requested that the authorisation server doesn’t

recognize, use this code. Note that unknown grant types also use this specific error code rather

than using the invalid_request above.

The entire error response is returned as a JSON string, similar to the successful response. Below is an

example of an error response.

HTTP/1.1 400 Bad Request

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Pragma: no-cache

{

 "error": "invalid_request",

}

Technical standards | July 2022

 32

7. Register PeI API

8.1 Summary of the Register PeI API

When the data provider (UMA resource server) has determined a match within their internal records and

obtained the PAT token to enable access to the UMA protection API hosted in the authorisation server

then the data provider will be able to access the API to register PeIs (resources) and place them under

protection of an authorisation control on behalf of the pension owner (resource owner) and manage

them over time. Protection of a resource at the authorisation server begins on successful registration

and ends on successful deregistration.

The authorisation server MUST support the following five registration options and MUST require a valid

PAT for access to them; any other operations are undefined by this specification. Here, rreguri stands for

the resource registration endpoint and _id stands for the authorisation server-assigned identifier for the

web resource, returned by the authorisation server when the create resource operation was performed,

corresponding to the resource at the time it was created, included within the URL returned in the

Location header. Each operation is defined in its own section below.

Create resource description: POST rreguri/

Read resource description: GET rreguri/_id

Update resource description: PUT rreguri/_id

Delete resource description: DELETE rreguri/_id

List resource descriptions: GET rreguri/

The resource server must persist the following, for each Resource Owner following a create resource

operation:

• Resource _id – index of the registered resource (PeI)

• Resource owner’s PAT – access token to API

• Authorisation Server ‘AS URI’ which issued the PAT (at which the resource _id is registered) -

address of the authorisation server token endpoint

The resource server should also persist these items in a manner which it can locate them using the

inbound URL of the view request.

8.2 Hosting

The API will be hosted on the authorisation server which is part of the C&A service. The resource server

will use this API at the authorisation server's resource registration endpoint to create, read, update, and

delete resource descriptions, along with retrieving lists of such descriptions. The descriptions consist of

JSON documents that are maintained as web resources at the authorisation server. The authorisation

server should declare this endpoint in the discovery document so that the resource server knows the

endpoint.

Technical standards | July 2022

 33

8.3 Format

The API will be a REST API using JSON encoded as UTF-8.

8.4 Authorisation

The data provider will need to use the relevant PAT specific to the pension owner to authorise it’s use of

the API when making a request to the authorisation server to create, read, update or delete a resource

(PeI).

8.5 HTTP Method

This will be depending on the type of request ie create, read, update, delete, list. These is covered in the

relevant sections below.

8.6 Resource Description

A resource description is a JSON document that describes the characteristics of a resource sufficiently

for an authorisation server to protect it. A resource description will have the following parameters:

Resource scopes – required

These will be [“value”, “owner”, “delegate”]. All three scopes must be used for all registrations so that

the resource owner can subsequently delegate access if required without further resource server activity.

Name – required

This is the URN of the resource, i.e. of the pension asset at the resource server. It will be used as the

unique name against which the authorisation server will apply authorisation protection and is the

representation of the pension asset as is available to a pensions dashboard client. It is a URN of the

form: ‘urn:pei:’<holder-name GUID>’:’<asset GUID>’

Type – required

This is a URI of the type of all ‘name’ parameters used in the Pension Dashboard ecosystem. It is

required for future extension, eg to support resources which have wider scope options than defined here,

or for specialised RS-AS relationships in the future.

Description – required.

Data standards for the pensions dashboard ecosystem will define ‘type’ and ‘name’ mandated here. It

may be that human readable derivations of ‘name’ will be aided by this ‘description’. Format of this

field TBC.

8.7 Create resource description

The resource server must use the HTTP "POST" method when registering the resource with the

authorisation server. The resource server must register each pension asset as a separate resource (to

Technical standards | July 2022

 34

enable delegation and access at the most granular level). The request must contain the required

parameters.

Example of a resource registration request message with a PAT in the header:

POST /rreg/ HTTP/1.1

Content-Type: application/json;charset=UTF-8

Authorisation: Bearer

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9

lIiwiaWF0IjoxNTE2MjM5MDIyfQ.SflKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5c

...

{

 "resource_scopes":["value”, “owner”, “delegate”],

 "name": "pei:0e55140a-87d3-41cf-b6f7-bc822a4c3c3b:6e29eeb8-814c-44a6-a43f-

b4830f3f4590",

 "type": “http://pdp.gov/uma/PEI”,

 “description” : “Aviva Pension”

}

If the request is successful, the resource is thereby registered and the authorisation server MUST

respond with an HTTP 201 status message that includes a location header and an resource_id

parameter. The resource _id parameter is issued by the authorisation server for each registered

resource, i.e. as a result of each UMA registration of a PeI, initiated by the resource server, authorised by

the PAT. The resource_id is the common index between authorisation server and resource server

associated with each PeI.

Example resource registration response message:

HTTP/1.1 201 Created

Content-Type: application/json;charset=UTF-8

Location: /rreg/KX3A-39WE

...

Technical standards | July 2022

 35

{

 " resource_id":"KX3A-39WE"

}

8.8 Read resource description

The resource server must use HTTP GET method to read a previously registered resource description. If

the request is successful, the authorisation server MUST respond with an HTTP 200 status message that

includes a body containing the referenced resource description, along with an _id parameter.

Example of a read request with a PAT in the header:

GET /rreg/KX3A-39WE HTTP/1.1

Authorisation: Bearer

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9

lIiwiaWF0IjoxNTE2MjM5MDIyfQ.SflKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5c

...

Example of a successful response, containing all the parameters that were registered as part of the

description:

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

...

{

 " resource_id":"KX3A-39WE",

 "resource_scopes":["value”, “owner”, “delegate”],

 "name": "pei:0e55140a-87d3-41cf-b6f7-bc822a4c3c3b:6e29eeb8-814c-44a6-a43f-

b4830f3f4590",

 "type": “http://pdp.gov/uma/PEI”,

 “description” : “Aviva Pension”

}

Technical standards | July 2022

 36

8.9 Update resource description

The resource server must use the HTTP PUT method to update a previously registered resource

description, by means of a complete replacement of the previous resource description. If the request is

successful, the authorisation server MUST respond with an HTTP 200 status message that includes an

resource_id parameter.

Example of a update request adding a description parameter to a resource description that previously

had none, with a PAT in the header:

PUT /rreg/9UQU-DUWW HTTP/1.1

Content-Type: application/json

Authorisation: Bearer

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9

lIiwiaWF0IjoxNTE2MjM5MDIyfQ.SflKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5c

...

{

 "resource_scopes":["value”, “owner”, “delegate”],

 "name": "pei:0e55140a-87d3-41cf-b6f7-bc822a4c3c3b:6e29eeb8-814c-44a6-a43f-

b4830f3f4590",

 "type": “http://pdp.gov/uma/PEI”,

 “description” : “Aviva Pension”

}

Form of a successful response, not containing the optional user_access_policy_uri parameter:

HTTP/1.1 200 OK

...

{

 "resource_id":"9UQU-DUWW"

}

Technical standards | July 2022

 37

8.10 Delete resource description

The resource server must use the HTTP delete method to delete a previously registered resource

description. If the request is successful, the resource is thereby deregistered and the authorisation server

MUST respond with an HTTP 200 or 204 status message.

Form of a delete request, with a PAT in the header:

DELETE /rreg/9UQU-DUWW

Authorisation: Bearer

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9

lIiwiaWF0IjoxNTE2MjM5MDIyfQ.SflKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5c

...

Form of a successful response:

HTTP/1.1 204 No content

...

8.11 List resource description

The resource server must use the HTTP GET method in order to get a list of all previously registered

resource identifiers for this resource owner. The authorisation server MUST return the list in the form of a

JSON array of resource_id string values.

The resource server can use this method as a first step in checking whether its understanding of

protected resources is in full synchronization with the authorization server's understanding.

Form of a list request, with a PAT in the header:

GET /rreg/ HTTP/1.1

Authorisation: Bearer

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9

lIiwiaWF0IjoxNTE2MjM5MDIyfQ.SflKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5c

...

Form of a successful response:

HTTP/1.1 200 OK

...

Technical standards | July 2022

 38

["KX3A-39WE",

 "9UQU-DUWW"

]

8.12 Error handling

If the request fails because the resource server does not have a valid access token (ie PAT is missing or

has expired) then the authorisation server responds with an HTTP 401 status code as the request cannot

be authenticated.

If a request is successfully authenticated, but is invalid for another reason, the authorisation server

produces an error response by supplying a JSON-encoded object with the following members in the

body of the HTTP response:

error – REQUIRED except as noted. A single error code. Values for this parameter are defined throughout

this specification.

error_description – OPTIONAL. Human-readable text providing additional information.

error_uri – OPTIONAL. A URI identifying a human-readable web page with information about the error.

HTTP/1.1 400 Bad Request

Content-Type: application/json

Cache-Control: no-store

...

{

 "error": "invalid_resource_id",

 "error_description": "Permission request failed with bad resource ID.",

 "error_uri": "errors to be defined later in design"

}

If the request to the resource registration endpoint is incorrect, then the authorisation server instead

responds as follows:

If the referenced resource cannot be found, the authorisation server MUST respond with an HTTP 404

(Not Found) status code and MAY respond with a not_found error code.

Technical standards | July 2022

 39

If the resource server request used an unsupported HTTP method, the authorisation server MUST

respond with the HTTP 405 (Method Not Allowed) status code and MAY respond with an

unsupported_method_type error code.

If the request is missing a required parameter, includes an invalid parameter value, includes a

parameter more than once, or is otherwise malformed, the authorisation server MUST respond with the

HTTP 400 (Bad Request) status code and MAY respond with an invalid_request error code.

9. View API

9.1 Summary of view API

Enables a dashboard (client) to retrieve pension details on behalf of a requesting party (i.e pension

owner or delegate) by dereferencing the PeI which resolves to a URL and making a HTTP GET request to

access the pension details. It is this URL which is an UMA protected resource and if the request is

authorised via the UMA protocol then the data provider will respond back to the dashboard with the

pension details encoded within the data payload as a JWT.

9.2 Hosting

Each data provider connected to the ecosystem will be required to host their view API within their

domain.

9.3 Format

The view API will be a REST API using JSON encoded as UTF-8.

9.4 Authorisation

The dashboard client will authenticate itself with the authorisation server at run time as defined in

rfc8705 section 2 . In addition to this, all end point connections are secured using mutual TLS.

9.5 HTTP Method

The dashboard will make a HTTP GET request to the data provider’s view endpoint by dereferencing the

PeI which resolves into a URL. The request will carry sufficient information to identify the resource owner

at the data provider and the type of access being attempted:

• An identifier for the ‘pension resource’ owned by the resource owner at the resource server

which is being accessed

• The type of requesting party (owner or delegate)

The assumed design of the ‘unique dereferenceable identifier’ for each individual pension resource is of

the following form; and the access can carry a query parameter asserting the nature of the requesting

party user:

• ‘urn:pei:’<holder-name GUID>’:’<asset GUID>’

• ?user=owner (the default if absent) or ?user=delegate (for advisers or guidance staff)

https://datatracker.ietf.org/doc/html/rfc8705#section-2

Technical standards | July 2022

 40

The asset GUID can be used as a key within the data provider to locate both the internal asset and the

pension owner (ie resource owner’s identifier and PAT) with which it is associated and persisted by the

data provider after create resource operation. The data provider will use the PAT associated with the

pension owner to coordinate with the authorisation server to introspect the RPT (Section 6) or to obtain

a permissions ticket (Section 7) if necessary.

Example of a view request carrying an RPT:

GET/pei/b1c832df301a431aab330c7ef88275de?user=owner HTTP/1.1

Host: www.dashboard.aviva.com

Authorisation: Bearer

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9

lIiwiaWF0IjoxNTE2MjM5MDIyfQ.cThIIoDvwdueQB468K5xDc5633seEFoqwxjF_xSJyQQ.

In the above example the asset GUID is b1c832df-301a-431a-ab33-0c7ef88275de.

9.6 Response

If the view request has been determined to be authorised (as a result of introspecting the RPT or the

cached result of previous introspection) then the data provider will respond back to the dashboard with

the pension details encoded within the data payload as defined in the data standards for view as a

JWT.

Example of a successful response:

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

...

{

“pension_details”:”eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJwZW5zaW9uQXJyYW5nZW1lbnRE

ZXRhaWxzIjp7InBlbnNpb25SZWZlcmVuY2UiOiIwMDAzNzQ2MiIsInBlbnNpb25OYW1lIjoiU09MQVI

gRU5FUkdZIFNZU1RFTVMgUEVOU0lPTiBGVU5EIiwicGVuc2lvblR5cGUiOiJEQiIsInBlbnNpb25Pcml

naW4iOiJXIiwicGVuc2lvblN0YXR1cyI6IkEiLCJwZW5zaW9uU3RhcnREYXRlIjoiMjAwNC0xMC0yMyI

sInBlbnNpb25SZXRpcmVtZW50RGF0ZSI6IjIwNDUtMDctMDYifX0.G7oYVo1d18N-Y1TVBN-

db9oruAjQNHureeM62hsPvOc”

}

Technical standards | July 2022

 41

9.7 Error Handling

If the view request is invalid the data provider will respond back to the dashboard with a HTTP 401

code and an appropriate error message.

If the view request is missing an RPT or has an invalid RPT then the data provider in its response will

provide a WWW-Authenticate header with the authentication scheme UMA, with the issuer URI from the

authorisation server's discovery document in an as_uri parameter indicating the URL of the

authorisation server where the dashboard should reach for further interactions to get an access token

and the permission ticket in a ticket parameter. This will enable the dashboard to be able to initiate the

authorisation protocol and obtain a valid RPT with the authorisation server.

For example:

HTTP/1.1 401 Unauthorized

WWW-Authenticate: UMA realm="PensionDashboard",

 as_uri="https://as.pdp.com",

ticket=”eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6Ikpv

aG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ.cThIIoDvwdueQB468K5xDc5633seEFoqwxjF_xSJyQQ

”

...

If the data provider is unable to provide a permission ticket from the authorisation server or introspect

the RPT with the authorisation server as it is unable to access the protection API because the PAT has

expired, then it includes an error message telling the dashboard the PAT has expired and needs to be

refreshed.

For example:

HTTP/1.1 401 Unauthorized

as_uri="https://as.pdp.com",

error: "PAT expired"

Dashboards which have complied with the redirection and UMA protocols must not repeatedly retry and

simply inform their user of remedial action, as such a state is possible if the user has withdrawn consent

for this dashboard, or their state at the C&A is indeterminate (they haven’t proved their identity) or no

PeIs are shareable.

Technical standards | July 2022

 42

10. Introspect API

10.1 Summary of Introspect API

When a resource server receives a view request from a dashboard which is a accompanied by the

access token (RPT), the resource server will need to determine whether the access token is active and, if

so, its associated permissions before any pension details can be retrieved and sent back to the

dashboard. It does this by introspecting the RPT at the authorisation server by using the introspect API.

The response of the introspection can be cached for an appropriate amount time, yet to be defined by

PDP, so that if the same view request is made during the validity of the cached response then the

resource server does not need to make a repeat request to the authorisation server to check whether the

RPT is active, it can determine this by using a cached copy of the token introspection response. This will

avoid excessive load on the authorisation server.

10.2 Hosting

The API will be hosted on the authorisation server which is part of the C&A service. The authorisation

server will declare this endpoint in the discovery document so that the resource server knows the

endpoint.

10.3 Format

The API will be a REST API using JSON encoded as UTF-8

10.4 Authorisation

The data provider will need to use the relevant PAT specific to the pension owner to authorise it’s use of

the API when making an introspection request to the authorisation server.

10.5 HTTP Method

The resource server will call the Introspection API using HTTP POST method.

Example of the resource server's request to the authorisation server for introspection of an RPT, with a

PAT in the header:

POST /introspect HTTP/1.1

Host: as.pdp.com

Content-Type: application/x-www-form-urlencoded;charset=UTF-8

Authorization: Bearer

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9

lIiwiaWF0IjoxNTE2MjM5MDIyLCJhdWQiOiIxMjIzNDg5MCIsImV4cCI6MTIzNDU2Nzh9.XliAWL97B

MJx4V3WlIZESvEWhw7DGGUTJAOpIGYv_H0

...

Technical standards | July 2022

 43

token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG

4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ.cThIIoDvwdueQB468K5xDc5633seEFoqwxjF_xSJyQQ

10.6 Response

The authorisation server responds with a JSON object in "application/json" format with the following

parameters in the payload:

active

REQUIRED. Boolean indicator of whether or not the presented token is currently active.

permissions

REQUIRED. Extension parameter named permissions that contains an array of objects, each one

(representing a single permission) containing these parameters:

resource_id

REQUIRED. A string that uniquely identifies the protected resource, access to which has been

granted to this client on behalf of this requesting party. The identifier MUST correspond to a

resource that was previously registered as protected.

resource_scopes

REQUIRED. An array referencing zero or more strings representing scopes to which access was

granted for this resource. Each string MUST correspond to a scope that was registered by this

resource server for the referenced resource. Pension Dashboard valid granted scopes (in a

Requesting Party Token, RPT) must be a list of two containing “value” and “owner”

or ”delegate”.

exp

OPTIONAL. Integer timestamp, measured in the number of seconds since January 1 1970 UTC,

indicating when this permission will expire. If the token-level exp value pre-dates a permission-

level exp value, the token-level value takes precedence.

token_type

OPTIONAL. Type of the token as defined by PDPs UMA Profile, will be pension_dashboard_rpt

exp

OPTIONAL. Integer timestamp, measured in the number of seconds since January 1 1970 UTC,

indicating when this token will expire. If the token-level exp value pre-dates a permission-

level exp value, the token-level value takes precedence.

Technical standards | July 2022

 44

iss

OPTIONAL. String representing the issuer of this token.

Example of a response containing the introspection object:

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

...

{

 "active": true,

 "permissions": [

 {

 "resource_id": "658b9e38-dd91-4e35-93ca-5154aba7321e0",

 "resource_scopes": [

 "value", “owner”

],

 "exp": 1651001341

 }

],

 "token_type": " pension_dashboard_rpt",

 "exp": 1651001341,

 "iss":https://claimsgathe.sandbox.k8s.dev.pensiondashboard.org/am/oauth2

 }

Resource Servers are responsible for access to the resource – the introspection response needs to be

compared with what is stored internally (ie resource_id, scopes and expiry times) in order to determine

whether the access attempt is valid and relates to the correct resource.

https://claimsgathe.sandbox.k8s.dev.pensiondashboard.org/am/oauth2

Technical standards | July 2022

 45

10.7 Error Handling

If the request to the introspection endpoint is incorrect, then the authorisation server instead responds

as follows:

If the referenced resource cannot be found, the authorisation server MUST respond with an HTTP 404

(Not Found) status code and MAY respond with a not_found error code.

If the resource server request used an unsupported HTTP method, the authorisation server MUST

respond with the HTTP 405 (Method Not Allowed) status code and MAY respond with an

unsupported_method_type error code.

If the request is missing a required parameter, includes an invalid parameter value, includes a

parameter more than once, or is otherwise malformed, the authorization server MUST respond with the

HTTP 400 (Bad Request) status code and MAY respond with an invalid_request error code.

11. Permission API

11.1 Summary of permission API

If the view request made by the dashboard is without an RPT or is accompanied by an invalid RPT then

the resource server will coordinate with the authorisation server to request one or more permissions

(resource identifiers and corresponding scopes) on the dashboard’s behalf and receive a permissions

ticket on return. The resource server must request scopes “value” and either “delegate” (if the inbound

call explicitly requested this), or, “owner” (by default or as explicitly requested), but not both. The

permissions ticket is used by the dashboard to initiate the UMA Grant protocol with the authorisation

server to obtain a new RPT in order to authorise it’s view request.

11.2 Hosting

The API will be hosted on the authorisation server which is part of the C&A service. The authorisation

server will declare this endpoint in the discovery document so that the resource server knows the

endpoint.

11.3 Format

The API will be a REST API using JSON encoded as UTF-8

11.4 Authorisation

The data provider will need to use the relevant PAT specific to the pension owner to authorise it’s use of

the API when making permissions requests to the authorisation server.

11.5 HTTP method

The resource server will call the permission API using HTTP POST method. The body of the HTTP request

message contains a JSON object for requesting a permission for single resource identifier.

Technical standards | July 2022

 46

The object format is derived from the resource description format specified in Section 4.6; it has the

following parameters:

resource_id

REQUIRED. The identifier for a resource to which the resource server is requesting a permission on behalf

of the client. The identifier MUST correspond to a resource that was previously registered.

resource_scopes

REQUIRED. An array referencing zero or more identifiers of scopes to which the resource server is

requesting access for this resource on behalf of the client. Each scope identifier MUST correspond to a

scope that was previously registered by this resource server for the referenced resource. Pension

Dashboard valid requested scopes (in a permission ticket) must be a list of two containing “value” and

“owner” or ”delegate”.

Example of an HTTP request for a single permission at the authorization server's permission endpoint,

with a PAT in the header:

POST /perm HTTP/1.1

Content-Type: application/json;charset=UTF-8

Host: as.pdp.com

Authorization: Bearer

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9

lIiwiaWF0IjoxNTE2MjM5MDIyLCJhdWQiOiIxMjIzNDg5MCIsImV4cCI6MTIzNDU2Nzh9.XliAWL97B

MJx4V3WlIZESvEWhw7DGGUTJAOpIGYv_H0

...

{

 "resource_id":" KX3A-39WE",

 "resource_scopes":["value”, “owner”],

}

11.6 Response

If the authorisation server is successful in creating a permission ticket in response to the resource

server's request, it responds with an HTTP 201 (Created) status code and includes the ticket parameter

in the JSON-formatted body as signed JWT. Regardless of whether the request contained one or

multiple permissions, only a single permission ticket is returned.

Technical standards | July 2022

 47

For example:

HTTP/1.1 201 Created

Content-Type: application/json;charset=UTF-8

...

{

“ticket”:”eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6Ikpv

aG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyLCJhdWQiOiIxMjIzNDg5MCIsImV4cCI6MTIzNDU2Nzh9.Xli

AWL97BMJx4V3WlIZESvEWhw7DGGUTJAOpIGYv_H”

}

The PMT token is a JWT3 as defined in [JWT] and contains the following claims.

iss

REQUIRED. Registered claim name. Defined [JWT]. Profiled: unique identifier within dashboard

ecosystem of the AS issuing the JWT.

sub

REQUIRED. Registered claim name. Defined [JWT]. Profiled: unique identifier within scope of iss of the

Resource Owner identifier at the AS (derived from the PAT used in the initial permission ticket request).

aud

REQUIRED. Registered claim name. Defined [JWT]. Profiled: unique identifier within the scope of the

dashboard ecosystem of the authorisation server.

iat

REQUIRED. Registered claim name. Defined [JWT]. Profiled: time of issue.

exp

REQUIRED. Registered claim name. Defined [JWT]. Profiled: time of expiry.

3 PDP’s profile of UMA suggests the use of structured tokens however this is not mandatory and is

up to the choice of the UMA implementors

Technical standards | July 2022

 48

jti

REQUIRED. Registered claim name. Defined [JWT]. Profiled: using jti as the unique token identifier.

Public claim name. none

rs

REQUIRED. Private claim name. The identifier of the Resource Server. (Derived from the PAT used in the

initial permission ticket request.)

owner

OPTIONAL. Private claim name. The identifier of the RO at the Resource Server. (Derived from the PAT

used in the initial permission ticket request.) May be of use to the RS to minimise lookup time of

resource _id to derive the owner of the resource.

permissions

REQUIRED. Private claim name. UMA permission as defined in [UMAGrant] and [UMAFedAuthz] using

scopes defined in this profile.

rqp

OPTIONAL. Private claim name. Structured representation (JSON object) of the pension_dashboard_rqp

which was presented with the permission ticket (if any) in a previous call to the AS. Claim must be

present when the permission ticket is presented for the second or subsequent time by a dashboard

client. The AS must populate this claim with the contents of the pension_dashboard_rqp which was

presented in the call for which it is reissuing a permission ticket, having checked that the content is in

accord with the same requesting party presenter.

assuredID

OPTIONAL. Private claim name. Structured representation (JSON object) of the identity of the requesting

party (as uniquely represented at the AS) and the asserting identity provider reference. Claim is present

when the AS reissues it after assured identification and if necessary, confirmation of the assured

professional status of a ‘delegate’ requesting party.

The token must be signed by the issuer. It MUST be encrypted for the AS.

The token may be persisted by the AS to enable correlation across presentations of such tokens.

As per [UMAGrant] 5.5 permission tickets are single use: the AS must issue a new token with a new jti

for every iteration of the permission process. The AS must ensure that authorisation process and any

dependent tokens are revoked if a permission ticket is replayed.

Technical standards | July 2022

 49

The token will always be presented to the token or claims interaction endpoints at the AS by the DB

client so it does not need to be bound further than application level checking by the AS which must

ensure that the pension_dashboard_rqp details match across related calls.

11.7 Error handling

If the resource server's permission registration request is authenticated properly but fails due to other

reasons, the authorization server responds with an HTTP 400 (Bad Request) status code and includes

one of the following error codes:

“invalid_resource_id” – At least one of the provided resource identifiers was not found at the

authorization server.

“invalid_scope” – At least one of the scopes included in the request was not registered previously by

this resource server for the referenced resource.

12. PAT refresh API

12.1 Summary of PAT refresh API

When the PAT needs to be refreshed the authorisation server will need to send across the required

parameters to the data provider in order for them to be able to obtain a new PAT. The authorisation

server will call this API which will be exposed by data providers and they will receive the required

parameters and trigger them to coordinate with the authorisation server to exchange the temporary

credential user account token which is an Oauth authorisation grant for the PAT.

12.2 Hosting

Each data provider connected to the ecosystem will be required to host their PAT refresh API within their

domain.

12.3 Format

The refresh API will be an Oauth REST API using JSON encoded as UTF-8.

12.4 Authorisation

This is a closed ecosystem with all end point connections secured using mutual TLS with only the

authorisation server invoking the PAT refresh endpoints. There are no additional API security

requirements for the refresh API.

12.5 HTTP method

The authorisation server will be restricted to only make a HTTP POST requests to each data provider

PAT refresh endpoint containing the required parameters: the User Account Token which is a OAuth2

authorisation grant expressed as a JWT which can be exchanged for the PAT, the resource owner’s

consent expressed as a JWT , the resource_id and PeI so that the data provider can locate the resource

owner and PAT which requires refreshing.

Technical standards | July 2022

 50

For example, the C&A makes the following HTTP POST request using mTLS:

POST /refresh HTTP/1.1

Host: www.dashboard.aviva.com

Content-Type: application/json;charset=UTF-8

{

“user_account_token”:”eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiw

ibmFtZSI6IkpvaG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ.SflKxwRJSMeKKF2QT4fwpMeJf36POk6y

JV_adQssw5c”,

"consents_token":"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmF

tZSI6IkpvaG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ.SflKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_a

dQssw5c",

"resource_id": “KX3A-39WE”,

“pei”:“pei:aed123aq:WGF45920EJH348ASEWQ0284"

}

12.6 Response

If the request sent by the C&A is success then the data provider will respond with a HTPP 202 Accepted

status implying acknowledgment of the PAT refresh request.

HTTP/1.1 202 Accepted

Following that the resource server requests a new PAT by quoting the user account token in its request

the authorisation server token endpoint – see Section 3 Obtain PAT.

12.7 Error handling

If the PAT refresh request sent by the authorisation server is fails then data provider is expected to

respond with the appropriate HTTP status code and error message. The body of the response for an

error must contain a message in verbose and plain language where it describes, accordingly with the

error catching process, what went wrong and possibly how to amend so as to issue a new, valid

request.

4xx

Technical standards | July 2022

 51

The 4xx class of status code is intended for cases in which the client seems to have erred. Except when

responding to a POST request, the server SHOULD include an entity containing an explanation of the

error situation, and whether it is a temporary or permanent condition.

Status Message Note

400 Bad Request Potential bad requests examples:

• authorisation server is not sending a HTTP POST

• Parsing error by data provider

• Schema not configured correctly

5xx

The 5xx (Server Error) class of status code indicates that an exception occurred during the elaboration

of a request. An indication about the nature of the error SHOULD be included together with an indication

if the error is temporary or permanent.

Status Message Note

500 Internal Server

Error

13. Authorise API

13.1 Summary of authorise API

The dashboard initiates the authorisation ‘dance’ using this Oauth specific API to AS token endpoint to

obtain a new access token (RPT). The dashboard will need to provide a set of claims needed for the AS

to assess the current authorisation context when interacting with the AS token endpoint. Once this

process is successful the AS in its response will issue a new access token (RPT) for the dashboard to

authorise it’s view requests in the future.

13.2 Hosting

The API will be hosted on the authorisation server which is part of the C&A service. The dashboard will

have obtained the as_uri from the resource server following a failed view request.

13.3 Format

The API will be a REST API using JSON encoded as UTF-8.

Technical standards | July 2022

 52

13.4 Authorisation

The dashboard client will authenticate itself with the authorisation server at run time as defined in

rfc8705 section 2 . In addition to this, all end point connections are secured using mutual TLS.

13.5 HTTP Method

The dashboard MUST use the HTTP "POST" method when making access token

requests to the authorisation server’s token endpoint. It sends the following parameters using the

"application/x-www-form-urlencoded" format with a character encoding of UTF-8 in the HTTP request

entity-body:

grant_type

REQUIRED. MUST be the value urn:ietf:params:oauth:grant-type:uma-ticket.

ticket

REQUIRED. The most recent permission ticket received by the client (dashboard) as part of this

authorisation process. Permission ticket is a structured JWT.

claim_token

REQUIRED. The client must provide a claim of type pension_dashboard_rqp. The contents of this token

must represent the current requesting party user at the dashboard client.

claim_token_format

REQUIRED. The claim (above) is of a specific type ‘pension_dashboad_rqp’. UMA requires this

parameter to match the claim(s).

scope

REQUIRED. The dashboard client request MUST contain the requested pension dashboard scopes: value

and owner/delegate

pct

OPTIONAL. The client MUST provide its existing PCT for the requesting party (i.e. for the combination of

the client and its user), for the resource the client is seeking to access for that requesting party, if it has

one, even if it knows that the PCT has expired.

https://datatracker.ietf.org/doc/html/rfc8705#section-2

Technical standards | July 2022

 53

rpt

OPTIONAL. The client SHOULD provide its existing RPT for the resource it requested in the previous call

to the same RS for the same requesting party, if it has one, even if it knows that this RPT is expired.

(Although the profile will not upgrade RPTs, this is included to enable flexibility for possible future

extensions.)

For example, the dashboard client makes the following HTTP POST request using mTLS:

POST /token HTTP/1.1

Host: as.pdp.com

Content-Type: application/x-www-form-urlencoded;charset=UTF-8

...

grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Auma-ticket

&ticket=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9l

IiwiaWF0IjoxNTE2MjM5MDIyfQ.SflKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5c

&claim_token= aGVsbG8gd29ybGQ

&claim_token_format= this type name needs agreed URI format, based on the profile’s domain

&scope=value owner

&pct=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIi

wiaWF0IjoxNTE2MjM5MDIyLCJleHAiOjM1Nzg5Nzg5NywianRpIjo1NDIzNjIzOTgwfQ.hp1udPrSdTRkLf3Qz

RoHFff_T6BzRqlSADIZoZ-c5sI

13.6 Response

If the permission request is successful the authorisation server will issue the RPT and optionally a PCT if

required.

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

...

{

Technical standards | July 2022

 54

"access_token":"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6Ikpv

aG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ.SflKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5c ",

“token_type”: “pension_dashboard_rpt”,

“upgraded”: false,

"pct":"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIi

wiaWF0IjoxNTE2MjM5MDIyLCJleHAiOjM1Nzg5Nzg5NywianRpIjo1NDIzNjIzOTgwfQ.hp1udPrSdTRkLf3Qz

RoHFff_T6BzRqlSADIZoZ-c5sI"

}

13.7 Error handling

If the permission request is unsuccessful the authorisation server will respond with the appropriate error.

Example of a need_info response with a hint to redirect the requesting party to a claims interaction

endpoint:

HTTP/1.1 403 Forbidden

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

...

{

"error":"need_info",

“ticket":"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4g

RG9lIiwiaWF0IjoxNTE2MjM5MDIyLCJleHAiOjM1Nzg5Nzg5NywianRpIjo1NDIzNjIzOTgwfQ.hp1udPrSdT

RkLf3QzRoHFff_T6BzRqlSADIZoZ-c5sI ",

"redirect_user":"https://as.pdp.com/rqp_claims?id=2346576421"

}

Example when the client was not authorised to have the permissions:

HTTP/1.1 403 Forbidden

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Technical standards | July 2022

 55

...

{

 "error":"request_denied"

}

14. Obtain PeIs API

14.1 Summary of obtain PeIs API

In order for the dashboard, whether used by the owner or their delegate, to obtain the owner’s PeIs

following the completion of find, the dashboard will pull the PeIs from the owner user’s C&A account via

an API hosted at the authorisation server.

14.2 Hosting

The API (an UMA Resource Server) will be hosted on the authorisation server which is part of the C&A

service.

14.3 Format

The API will be a REST API using JSON encoded as UTF-8.

14.4 Authorisation

The dashboard client will authenticate itself with the authorisation server at run time as defined in

rfc8705 section 2 . In addition to this, all end point connections are secured using mutual TLS.

14.5 HTTP Method

The Dashboard will make a HTTP GET request to the obtain PeI endpoint for that specific user’s C&A

account – ie the dashboard attempts to GET the URL https:://CA.ObtainPeIs/<userGUID> with a

parameter of the user is ‘owner’ or ‘delegate’. The ‘userGUID’ is the unique identifier for the user’s C&A

account. As it is a protected resource the dashboard will need to quote an appropriate access in order

for the request to be successful.

Example of a obtain PeIs request carrying an RPT:

GET/a7f542a22c8647b3b62c2fb9a81c2495?user=owner HTTP/1.1

Host: www.CA.ObtainPeIs.com

Authorization: Bearer

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9

lIiwiaWF0IjoxNTE2MjM5MDIyfQ.cThIIoDvwdueQB468K5xDc5633seEFoqwxjF_xSJyQQ.

https://datatracker.ietf.org/doc/html/rfc8705#section-2

Technical standards | July 2022

 56

14.6 Response

If the obtain PeI request has been determined to be authorised (as a result of introspecting the RPT or

the cached result of previous introspection) then the C&A will respond back to the dashboard with the

user’s PeI(s).

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

...

{

“peiList”: [“pei: 9d0f04b2-8a47-4fb9-91d9-08828036b631:463aabf7-75c1-4d87-b5c8-

2c7ffca2341f”, “pei: f315e508-0c84-41bf-afdf-e40db1cb10ec:9da49adb-bc27-

4904-8303-ba367ead8592”, “pei: 728f9722-88c1-42f3-965a-

d2faab8967e8:26d93ebc-0dfd-43c0-bfee-2b8f8ad7a742”]

}

14.7 Error handling

If the obtain PeI request is invalid the C&A will respond back to the dashboard with a HTTP 401 error

code and an appropriate error message.

If the request is missing an RPT or has an invalid RPT then the C&A in its response will provide a WWW-

Authenticate header with the authentication scheme UMA, with the issuer URI from the authorisation

server's discovery document in an as_uri parameter indicating the URL of the authorisation server where

the dashboard should reach for further interactions to get an access token and the permission ticket in a

ticket parameter. This will enable the dashboard to be able to initiate the authorisation protocol and

obtain a valid RPT with the authorisation server.

For example:

HTTP/1.1 401 Unauthorized

WWW-Authenticate: UMA realm="PensionDashboard",

 as_uri="https://as.pdp.com",

ticket=”eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6Ikpv

aG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ.cThIIoDvwdueQB468K5xDc5633seEFoqwxjF_xSJyQQ

”

Technical standards | July 2022

 57

...

If, after attempting authorisation as above a dashboard cannot obtain an access token (RPT) it should

stop attempting to do so, perhaps informing its user of remedial action. This condition is possible if the

user has withdrawn consent for that dashboard, or in some other way consent to share PeIs is not

current.

15. Obtain PeI configuration API

15.1 Summary of obtain PeI configuration API

Dashboards will need to dereference the pension identifier which will be in the form of a URI in order to

compose the URL to make the HTTP GET request on to view pension details. Dereferencing a PeI means

taking the PeI which is a URI (format ‘pei’:<holder-name GUID>’:’<asset GUID> e.g.“pei:cd2a3015-090e-

469e-839b-5e5435a29512:3d2b0cde-5831-4537-b4e4-d6c44bf1373a”) and breaking it into components,

looking up the holdername, e.g. ‘cd2a3015-090e-469e-839b-5e5435a29512’ in a configuration table to

derive a scheme name, eg ‘aviva.dashboard/pei’, and composing a URL,

e.g.https://aviva.dashboard/pei/3d2b0cde58314537b4e4d6c44bf1373a. The dereferencing configuration

table at the dashboard is based on master data maintained from the governance register. The master will

be accessible via an API by registered dashboard providers.

15.2 Hosting

The API will be hosted on the governance register

15.3 Format

The API will be a REST API using JSON encoded as UTF-8.

15.4 Authorisation

The dashboard client will authenticate itself with the authorisation server at run time as defined in

rfc8705 section 2 . In addition to this, all end point connections are secured using mutual TLS.

15.5 HTTP Method

The Dashboard will make a HTTP GET request to the obtain PeI configuration endpoint with the

parameters containing the variable name (ie pei) and corresponding value (i.e. holdername) – ie the

dashboard attempts to GET the URL https:://GR.ObtainPeIsConfig?pei”= 26d93ebc-0dfd-43c0-bfee-

2b8f8ad7a742, 728f9722-88c1-42f3-965a-d2faab8967e8,…” this will be for a specific set of PeIs. The

dashboard can alternative request all of the PeI configuration from the governance register by using the

appropriate query parameter in the HTTP GET request – ie the dashboard attempts to GET the URL

https:://GR.ObtainPeIsConfig?pei=all.

https://datatracker.ietf.org/doc/html/rfc8705#section-2

Technical standards | July 2022

 58

15.6 Response

The governance register will respond with the corresponding hostname for each of holdername.

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

...

 {

 "26d93ebc-0dfd-43c0-bfee-2b8f8ad7a742": "aviva.dashboard/pei",

 "728f9722-88c1-42f3-965a-d2faab8967e8": "scottishwidows.dashboard/pei"

 }

15.7 Error handling

If the request sent by the dashboard fails then governance register is expected to respond with the

appropriate HTTP status code and error message.

400 Bad Request

Potential bad requests examples:

• dashboard is not sending a HTTP GET

• parsing error by governance register

• schema not configured correctly

503 Service unavailable

• service is down for maintenance or overloaded by requests

Technical standards | July 2022

 59

16. Technical standards

16.1 Dashboard redirection protocols

Dashboards expose no interfaces (other than their redirection endpoint which is used to unwind a

previous redirection to the relevant Consent and Authorisation redirection interface).

Redirection from dashboard to the C&A is a vital constituent of these processes and for dashboard

designers it is vital to understand in connection with the strict ‘APIs’.

Dashboards must redirect their user agents to either of C&A’s interfaces – UMAGrant.ClaimsRedirection

or ConsentandControl.Redirect. The ClaimsRedirection interface is part of the UMA authorisation flow.

The Consent.Redirect interface handles requests of type:

• find (incl pullPeis)

• refresh PAT (RS failure case)

• consent

• account deletion (GDPR)

For every interaction made by the dashboard to the C&A it has to mint a new RQP token.

Formal description of the token. The RqP token is a JWT as defined in [JWT] and must profiled as

follows.

REQUIRED iss. Registered claim name. Defined [JWT]. Profiled: unique identifier within dashboard

ecosystem of the dashboard instance issuing the JWT. (This is Dbi.)

REQUIRED sub. Registered claim name. Defined [JWT]. Profiled: unique identifier within scope of iss, of

the requesting party which is authenticated to iss at the time the JWT is issued. (This is user@dbi.)

REQUIRED aud. Registered claim name. Defined [JWT]. Profiled: unique identifier within the scope of the

dashboard ecosystem of the authorisation server.

REQUIRED iat. Registered claim name. Defined [JWT]. Profiled: time of issue.

REQUIRED exp. Registered claim name. Defined [JWT]. Profiled: time of expiry.

REQUIRED jti. Registered claim name. Defined [JWT]. Profiled: using jti as the unique token identifier.

Public claim name. none

REQUIRED role. Private claim name. The iss states the role in which the requesting party is acting. String

value. One of “owner” or “delegate”.

The token MUST be signed by the issuer. The token MAY be encrypted for the AS.

Technical standards | July 2022

 60

The token must always be presented to the token or claims interaction endpoints at the AS by the DB

client along with an AS issued token. It does not need to be bound.

16.2 JWT signing and verification

After successfully onboarding to the CDA you will receive a crypto package which will contain a signing

certificate and embedded within it the private key which will be used to generate the signature using

RS256 as the signing algorithm to sign a JWT.

In order verify the signature of a JWT the CDA will expose a centralised JWKS endpoint which you will

able to call to obtain the corresponding public key to verify the signature.

16.3 Pension identifier format

The pension identifier (PeI) shall have a standardised format across all providers. It is expressed in the

form of a URN (uniform resource name) that provides a location-independent, globally-unique,

persistent identifier, with a defined namespace. PeIs are issued by the data provider and must be

associated with a matched (full or possible) pension asset. PeIs (more specifically the PeI.assetGUID)

can be associated with a pension asset at any time prior to registration of the asset with the C&A

Service. Once associated with a pension asset a PeI must not be reused for a different pension asset.

It is a URN of the form: ‘urn:pei:’<holder-name GUID>’:’<asset GUID>.

An example of a possible PeI is:

urn:pei:f1c72611-438b-4f72-a4b5-ec7e69000c31:8ff2063a-48bd-4ed7-bcf8-7c3b8f89626d

Formal description of the PeI. It must be profiled as follows.

REQUIRED

Both the Holder-name GUID and the Asset GUID are globally unique identifiers

Holder-name is a globally unique string which can be dereferenced to an endpoint (i.e. URL) which

serves view requests, composed of the view endpoint and the asset GUID making the query URL. If

properly authorised, the pension details associated with that asset ID are served by the full URL.

urn:pei:f1c72611-438b-4f72-a4b5-ec7e69000c31:8ff2063a-48bd-4ed7-bcf8-7c3b8f89626d

example View URL constructed by dereferencing the holdername to the base URL :

https://testISP.co.uk/8ff2063a48bd4ed7bcf87c3b8f89626d

16.4 GUID creation protocols

Formal description of GUIDs. They are 32 hex digits (128 bits) allocated ‘randomly’ by standard

methods profiled using the approach in rfc4122 (https://www.ietf.org/rfc/rfc4122.txt).

Technical standards | July 2022

 61

16.5 Data providers (UMA Resource Servers)

Data providers (UMA resource servers) will operate the UMA FedAuthz protocols, which include

introspection, permission and register API calls, as described in the above sections.

The resource server must persist the following for each Resource Owner following a create resource

operation:

• resource _id – index of the registered resource (PeI)

• resource owner’s PAT – access token to the Protection API

• authorisation server ‘AS URI’ which issued the PAT (at which the resource _id is registered) -

address of the authorisation server token endpoint

The resource server should also persist these items in a manner which allows it to locate them using the

inbound URL of the view request.

Resource servers are responsible for access to the resource – introspection response needs to be

compared with what is stored internally for the resource in order to ensure access request is authorised.

Technical standards | July 2022

 62

17. Appendix

17.1 Glossary

Term Definition

Resource Owner

(i.e. Pension Owner)

The resource owner is a user or legal entity that is capable of granting

access to a protected resource

Client (i.e. Dashboard)

The client is an application that is capable of making requests with the

resource owner's authorisation and on the requesting party's behalf

UMA Resource Server (ie

data provider)

The resource server hosts resources on a resource owner's behalf and is

capable of accepting and responding to requests for protected resources

UMA Authorisation

Server

Part of the C&A – the authorisation server protects resources hosted on a

resource server on behalf of resource owners. It manages and applies the

resources owner’s policy

PMT -

Permission Token

Gives permission for a dashboard to initiate the authorisation protocol in

order to authorise a retrieval request

RQP –

Requesting Party

Identifies the current user and their role in session at the dashboard when

requesting access. Can be either a pension owner or a delegate

RPT –

Requesting Party Access

Token

Needed by the dashboard to authorise its view call to the data provider

endpoint in order to retrieve pensions details related to the PeI. Each PeI

will have a unique RPT (i.e. one to one association)

Technical standards | July 2022

 63

PCT –

Persistent Claims Token

This claim binds the asserted user at dashboard and role to that user’s

assured identity at the ecosystem and, where applicable, professional

status. In doing so it acts as a medium-term authenticator correlator

helping reduce user friction in subsequent sessions when attempting to

retrieve pension details

PAT –

Protection API Token

OAuth2 token scope UMA protection which represents the Resource

Owner’s authorisation for the RS to manage federated authorisation at the

AS (permits APIs to register, obtain PMT, introspect RPTs)

User Account Token Oauth2 authorisation grant issued by the authorisation server to the

resource server so that it can be exchanged at the authorisation server’s

token endpoint for a PAT

	1. Introduction
	1.1 Purpose
	1.1
	1.2 Scope

	2. Technical overview
	2.1 Client registration
	2.2 Pension dashboards ecosystem primary components

	3. Sequence flows
	3.1 Initial find
	3.2 Internal register obtain PeIs-URL

	3.3 Pull PeIs
	3.4 Provider registers PeIs
	3.5 Identity process
	3.6 View
	3.7 Refresh process

	4. API technical standards
	4.1 Scope
	4.2 Transaction monitoring
	4.3 Third Party Standards

	5. Find API
	5.1 Summary of the find API
	5.2 Pension finder service (PFS)
	5.3 Hosting
	5.4 Format
	5.5 Authorisation
	5.6 HTTP method
	5.7 Response
	5.8 Error handling

	6. Obtain PAT API
	6.1 Summary of the obtain PAT API
	6.2 Hosting
	6.3 Format
	6.4 Authorisation
	6.5 HTTP Method
	6.6 Response
	6.7 Error handling

	7. Register PeI API
	8.1 Summary of the Register PeI API
	8.2 Hosting
	8.3 Format
	8.4 Authorisation
	8.5 HTTP Method
	8.6 Resource Description
	8.7 Create resource description
	8.8 Read resource description
	8.9 Update resource description
	8.10 Delete resource description
	8.11 List resource description
	8.12 Error handling

	9. View API
	9.1 Summary of view API
	9.2 Hosting
	9.3 Format
	9.4 Authorisation
	9.5 HTTP Method
	9.6 Response
	9.7 Error Handling

	10. Introspect API
	10.1 Summary of Introspect API
	10.2 Hosting
	10.3 Format
	10.4 Authorisation
	10.5 HTTP Method
	10.6 Response
	10.7 Error Handling

	11. Permission API
	11.1 Summary of permission API
	11.2 Hosting
	11.3 Format
	11.4 Authorisation
	11.5 HTTP method
	11.6 Response
	11.7 Error handling

	12. PAT refresh API
	12.1 Summary of PAT refresh API
	12.2 Hosting
	12.3 Format
	12.4 Authorisation
	12.5 HTTP method
	12.6 Response
	12.7 Error handling

	13. Authorise API
	13.1 Summary of authorise API
	13.2 Hosting
	13.3 Format
	13.4 Authorisation
	13.5 HTTP Method
	13.6 Response
	13.7 Error handling

	14. Obtain PeIs API
	14.1 Summary of obtain PeIs API
	14.2 Hosting
	14.3 Format
	14.4 Authorisation
	14.5 HTTP Method
	14.6 Response
	14.7 Error handling

	15. Obtain PeI configuration API
	15.1 Summary of obtain PeI configuration API
	15.2 Hosting
	15.3 Format
	15.4 Authorisation
	15.5 HTTP Method
	15.6 Response
	15.7 Error handling

	16. Technical standards
	16.1 Dashboard redirection protocols
	16.2 JWT signing and verification
	16.3 Pension identifier format
	16.4 GUID creation protocols
	16.5 Data providers (UMA Resource Servers)

	17. Appendix
	17.1 Glossary

